
Pocket Programming Language Newsletter
February 2007

Welcome to the monthly PPL newsletter. The PPL newsletter is open to contributions, if you have an
article, tips, advertising or anything else related to PPL, we will be very happy to include your
submissions.

Table of content

• Editorial
• What's New
• Coding Tips

• Regular expressions (Regex).
• Compressing strings.
• Encrypting strings.

• Linked-Lists
• Structures in Linked-Lists.
• PASM from the beginning.
• Form options quick reference.
• PPL Game Programming - Part 3

• The physic engine
• Time to say goodbye

Page 1

Editorial

Wow a new year. The last one has gone by so fast for us. Even though we are about one month late,
Happy New Year to all of our readers. Like we were saying, last year went by real fast and this new
year didn't start slow either. We are working hard on PPL on a daily basis, the forums are doing great,
our users are the cream of all users really. We are very proud of what we have achieved so far and we
will do everything so that it becomes even better.

Page 2

What's new

For a couple weeks now, we have made available several versions of PPL as beta. That means that
users can download a beta version without having to wait for an official release. New features have
been added to the beta and many bugs have been fixed. The new features that were added lately are
quite impressive.

As you read this letter, chances are that you are trying out these new features. We have redesigned the
PIDE interface with version 1.12 to follow Windows GUI guidelines more closely. The Visual Form
Builder in the PIDE has been redesigned almost from scratch. The controls are now sorted by
categories and displayed in a list format. You can now drag controls to the form to where you want
them to be placed exactly. The control display has also been re-coded to display the real control image.
It will now be possible to create custom controls in PPL that will be displayed in the editor exactly as
they would in the result form during execution. The properties editor has been re-coded to offer a more
up to date look and comes with custom editors for every property in the list. Custom controls can easily
be coded through a standard PPL library. The PIDE will allow to import custom controls that will be
available via our web site. And finally the property editor will offer better data type editing.

Version 1.13 of PPL will serve as a bridge version between 1.12 and 1.20. 1.20 will include more
features like a RAPI library, a new installer that will support Smartphones, a Pocket Outlook library
and file based levels in the Game Level Editor and so much more (nothing new, you are getting used to
get new features all the time :)).

Page 3

Coding Tips section:

Regular Expressions (Regex):

From www.regular-expressions.info:

“A regular expression (regex or regexp for short) is a special text string for describing a search
pattern. You can think of regular expressions as wildcards on steroids. You are probably familiar with
wildcard notations such as *.txt to find all text files in a file manager. The regex equivalent is .*\.txt .

But you can do much more with regular expressions. In a text editor like EditPad Pro or a specialized
text processing tool like PowerGREP, you could use the regular expression \b[A-Z0-9._%-]+@[A-Z0-
9.-]+\.[A-Z]{2,4}\b to search for an email address. Any email address, to be exact. A very similar
regular expression (replace the first \b with ^ and the last one with $) can be used by a programmer to
check if the user entered a properly formatted email address. In just one line of code, whether that
code is written in Perl, PHP, Java, a .NET language or a multitude of other languages.”

PPL supports a variety of expressions like:

\Quote the next metacharacter
^ Match the beginning of the string
. Match any character
$ Match the end of the string
| Alternation
() Grouping (creates a capture)
[] Character class

==GREEDY CLOSURES==
* Match 0 or more times
+ Match 1 or more times
? Match 1 or 0 times
{n} Match exactly n times
{n,} Match at least n times
{n,m} Match at least n but not more than m times

==ESCAPE CHARACTERS==
\t tab (HT, TAB)
\n newline (LF, NL)
\r return (CR)
\f form feed (FF)

==PREDEFINED CLASSES==
\l lowercase next char
\u uppercase next char
\a letters
\A non letters
\w alphanimeric [0-9a-zA-Z]

Page 4

\W non alphanimeric
\s space
\S non space
\d digits
\D non nondigits
\x exadecimal digits
\X non exadecimal digits
\c control charactrs
\C non control charactrs
\p punctation
\P non punctation

To search a string using regular expression in PPL you will use the Search() function. You can also
make sure that the string is an exact match of the regular expression you are providing with the Match()
function.

Let's take the following example:

string$ = "Bill Clinton";
expr$ = "^(Bill|George|Renald) (Clinton|Bush|Reagan)$";

Search(expr$, string$, b$, e$);
ShowMessage(b$ + "," + e$);

The expr$ variable contains an expression that says, if the first word is either Bill, George or Renald
and that the string ends with Clinton, Bush or Reagan, we have a match.

“Bill Clinton” will be the beginning of our result string, b$ and “” will be our ending string e$.

i$ = 0;
while(i$ <= subexpcount - 1)
 subexp(string$, i$, begin$, len$);
 ShowMessage("SubExp " + i$ + " = " + begin$ + "," + len$);
 i$++;
end;

In the previous example, we check each sub expression to see what matched in the string string$ and
where it started and how many characters the sub expression took from string$.

Sub expression 0 will return “Bill Clinton” for a length of 12 because it do the whole expression.
Sub expression 1 will return “Bill Clinton” but for 4 characters only, the first sub expression “^(Bill|
George|Renald)” is analyzed.
Sub expression 2 will return “Clinton” for 7 characters, the second sub expression “(Clinton|Bush|
Reagan)$” is analyzed.

Page 5

Compressing and Encrypting strings:

The Pro version of PPL comes fully loaded with different compression and decompression methods
from two simple functions: Compress() and UnCompress(). Here are the different compression
methods supported by PPL:

_RLE

RLE, or Run Length Encoding, is a very simple method for lossless compression. It simply replaces
repeated bytes with a short description of which byte to repeat, and how many times to repeat it.
Though simple and obviously very inefficient fore general purpose compression, it can be very useful
at times (it is used in JPEG compression, for instance).

_HUFFMAN

Huffman encoding is one of the best methods for lossless compression. It replaces each symbol with an
alternate binary representation, whose length is determined by the frequency of the particular symbol.
Common symbols are represented by few bits, while uncommon symbols are represented by many bits.
The Huffman algorithm is optimal in the sense that changing any of the binary codings of any of the
symbols will result in a less compact representation. However, it does not deal with the ordering or
repetition of symbols or sequences of symbols.

_LZ

There are many different variants of the Lempel-Ziv compression scheme. The Basic Compression
Library has a fairly straight forward implementation of the LZ77 algorithm (Lempel-Ziv, 1977) that
performs very well, while the source code should be quite easy to follow. The LZ coder can be used for
general purpose compression, and performs exceptionally well for compressing text. It can also be used
in combination with the provided RLE and Huffman coders (in the order: RLE, LZ, Huffman) to gain
some extra compression in most situations.

Lets take the following code:

in$ = LoadStr(AppPath$+ “MyFile.txt”, insize$);
New(out$, insize$ * 2);
outsize$ = Compress(_RLE, in$, out$, insize$);

This code will load file MyFile.txt into variable in$, return the size in bytes in variable insize$. We
then need to create an output buffer that is at least equal or preferably greater that the original input
buffer. We then apply the RLE compression method to in$ and outputting the result in the out$ variable
returning the new size of the out$ variable in outsize$.

Page 6

You can then decompress the out$ buffer to a new newin$ buffer with the following:

New(newin$, outsize$ * 2);
newinsize$ = Compress(_RLE, out$, newinsize$, outsize$);

Page 7

Encrypting strings in PPL:

What if you want to protect a file from sneaky eyes? The best solution is to encrypt the file using a very
strong password that only you know about. PPL comes with a nice function called Encrypt() that can
do this for you very easily.

s$ = "HELLO WORLD!";
Encrypt(s$, -1, "MYKEY", True);
ShowMessage(s$);
Encrypt(s$, -1, "MYKEY", False);
ShowMessage(s$);

In the following example we encrypt the string “HELLO WORLD!” using an encryption algorythm
that uses the key “MYKEY” to encode the result string. The last parameter of the Encryt() function
specify if we are encrypting or decrypting the string, true means encryt and false means decrypt. It is
always a good idea idea never to leave a key as a regular string in your code even though the .ppc file
that PPL generates is encrypted and compressed, it can be easier for a hacker to decode. Try to build
your key string using code with mathematical code if possible.

Page 8

Linked-lists

Finally a chance to talk about the linked-lists. You have probably heard or learnt about them in school
while studying C or maybe you've read about them on the internet or a magazine. Here is a great
explanation from the great wikipedia.com:

“In computer science, a linked list is one of the fundamental data structures used in computer
programming. It consists of a sequence of nodes, each containing arbitrary data fields and one or two
references ("links") pointing to the next and/or previous nodes. A linked list is a self-referential
datatype because it contains a pointer or link to another data of the same type. Linked lists permit
insertion and removal of nodes at any point in the list in constant time, but do not allow random
access.”

In PPL linked-lists variables are extremely powerful and versatile. In each node you can have a
different type of variable, structures or arrays. This opens up unlimited data storage in memory that is
simply unmatched.

To create a list variable, there many ways, here is how you declare a list variable and how you add
nodes to it:

List(l$);
Add(l$, 1, 2, 3, 4, 5);
Add(l$, “A”, “B”, “C”, “D”);

This new linked-list variable now contains 9 nodes with different values and types. Let's see how you
can move through the nodes like other languages would allow you to:

First(l$);
while (1 == 1)
 ShowMessage(l$);
 if (Next(l$) == false)
 break;
 end;
end;

Here is how we iterate through the list in reverse order:

Last(l$);
while (1 == 1)
 ShowMessage(l$);
 if (Prev(l$) == false)
 break;
 end;
end;

The First() function moves the list internal pointer to the first node, Next() moves to the next node
returning true if succeeded or false is past the end of the node list. The Last() function moves the

Page 9

internal list pointer to the last node in the list and the Prev() function moves to the previous node.

In PPL you can use the ForEach() statement to iterate through a list, an array, a structure or a matrix
type variable:

ForEach(l$)
 ShowMessage(l$);
end;

ForEachRev(l$)
 ShowMessage(l$);
end;

If you need to store the list node value into another variable, you can place a second variable as a target
in the ForEach() statement:

ForEach(l$, v$)
 ShowMessage(v$);
end;

Let's see how PPL can access nodes at random order, PPL can access list's nodes just like regular
arrays:

ShowMessage(l$[0]); // display 1
ShowMessage(l$[5]); // display A

How do we go to a specific node position? Simple, by using the Goto() function. How do we know
what node is the current one? Use the Lpos() function. How many nodes are in the list? Use the
Count() function.

Goto(l$, 0); // Like First()
ShowMessage(LPos(l$));

Goto(l$, Count(l$)-1); // Like Last()
ShowMessage(LPos(l$));

We can also move nodes around using the Lmove() function:

Lmove(l$, 3, 1); // This moves node 3 to node 1.

You can also insert nodes using the Ins() function:

Ins(l$, 0, 0); // Insert value 0 at node 0.

To delete a node from the list, you can use the Del() function, if you want to empty the whole list, just
use Empty().

Page 10

First(l$); // Move to first node.
Del(l$); // Deletes first node.
Goto(l$, 5); // Goto 5th node.
Del(l$); // Deletes 5th node.

Empty(l$); // Empty the whole list of all of its nodes.

In the next tutorial we will see how you can store different variable types like arrays and structures
inside a list node.

Page 11

Structures in Linked-lists

Linked-lists are very powerful and can allow for very complicated data storage. Now let's see how it
possible to store a different structure type inside each list node.

First we need to create our list node:

List(l$);
Add(l$);

We now have one list node in l$ and our current internal pointer is placed on that first node. We can
now define the variable type like we would with any other variable:

struct(l$, “a”, “b”);
l.a$ = 10;
l.b$ = 20;

We can now add a new node and store another structure into it:

Add(l$);
struct(l$, “c”, “d”);
l.c$ = 30;
l.d$ = 40;

Now let's iterate through the list and output the structure's element values:

ForEach(l$)
 if (Lpos(l$) == 0)
 ShowMessage(l.a$);
 ShowMessage(l.b$);
 else if (Lpos(l$) == 1)
 ShowMessage(l.c$);
 ShowMessage(l.d$);
 end;
end;

The Lpos() function returns the current pointer position of the list always starting with 0.

Imagine the possibilities offered by such flexibility.

Page 12

PASM from the Beginning (by Brad Manske)

"PASM can wait till after 1.0" was my reaction when I heard the plans to include a cross platform
assembler with PPL. While it was not a lot of code, the complexity was way up there. So that it could
run on multiple processors it had to be a virtual processor that was compiled to. There were 36
addressing modes for 22 assembly instructions that would potentially compile to a series of instructions
for 2 different processors. The project required complex and intimate knowledge of the processors and
the testing challenge was not going to be easy.

My earliest e-mail on this project (that I kept) is dated the 20th of March 2004. We had already
worked together for almost 2 years when the topic came up. There is no backing down from a complex
technical challenge, so even though the pressure to release 1.0 was high, PASM went forward. This
article will introduce you to PASM and it just may be the raw speed boost your code needs.

I will start off with some explanation for the people who have not had much exposure to assembly
language. Assembly is a text representation of the 1s and 0s that the computer actually executes. For
example:

X$ = 10;

This would be an instruction to move the value 10 into the variable X$:

move x, 10

Sound simple? Well, yes, if the processor supports moving a value into memory without going through
a register first. And if the value fits in a 32 bit register (Windows CE requires a 32 bit processor). And,
etc...

This is the reason that PASM uses a virtual processor internally. We couldn't guarantee that these
conditions would be met for each processor since all of the code written for PASM must run on all of
our supported platforms.

The PASM virtual processor is made up of 4 general purpose registers named R0, R1, R2 and R3.
There are more specialized registers like the Stack Pointer (SP) and the Stack Frame (SF). The
Arithmetic and Logic unit of our processor is a simplified RISC (Reduced Instruction Set Computing)
like design. The instruction set consists of about 22 different assembly operations. This isn't much
compared to the hundreds of instructions supported by some processors, but there are 36 addressing
modes to offset the simplicity of the instruction set.

Page 13

Here is a quick look at the MOV instruction and the addressing modes that it supports. For 32 bit
values:

mov Register, Value move from Value to Register
mov Absolute, Value move from Value to Absolute address
mov [Register], Value move from Value to Indexed Register
mov [Absolute], Value move from Value to Indexed Absolute address
mov Register, Register move from Register to Register
mov Register, [Register] move from Indexed Register to Register
mov [Register], Register move from Register to Indexed Register
mov [Register], [Register] move from Indexed Register to Indexed Register
mov Absolute, Register move from Register to Absolute address
mov [Absolute], Register move from Register to Indexed Absolute address
mov Register, [Register+offset] move from Index+Offset Register to Register
mov [Register+offset], Register move from Register to Index+Offset Register
mov [Register+offset], [Register+offset] move from Index+Offset Register to Index+Offset Register
mov Absolute+offset, Register move from Register to Absolute+Offset address
mov Absolute+offset, Value move from Value to Absolute+Offset address
mov [Absolute+offset], Register move from Register to Index+Offset Absolute address
mov [Absolute+offset], Value move from Value to Index+Offset Absolute address
mov [Register+offset], Value move from Value to Index+Offset Register

MOV also supports a size modifier for 8 bits (byte) and 16 bit (word) values:

mov size Register, Register move size from Register to Register
mov size Register, [Register] move size from Indexed Register to Register
mov size [Register], Register move size from Register to Indexed Register
mov size [Register], [Register] move size from Indexed Register to Indexed Register
mov size Absolute, Register move size from Register to Absolute address
mov size Absolute, Value move size from Value to Absolute address
mov size [Absolute], Register move size from Register to Indexed Absolute address
mov size [Absolute], Value move size from Value to Indexed Absolute address
mov size Register, Value move size from Value to Register
mov size [Register], Value move size from Value to Indexed Register
mov size Register, [Register+offset] move size from Index+Offset Register to Register
mov size [Register+offset], Register move size from Register to Index+Offset Register
mov size [Register+offset], [Register+offset] move size from Index+Offset Register to Index+Offset
Register
mov size Absolute+offset, Register move size from Register to Absolute+Offset address
mov size Absolute+offset, Value move size from Value to Absolute+Offset address
mov size [Absolute+offset], Register move size from Register to Index+Offset Absolute address
mov size [Absolute+offset], Value move size from Value to Index+Offset Absolute address
mov size [Register+offset], Value move size from Value to Index+Offset Register

A few quick note about the notation above. The brackets [] above mean that the value of the expression
inside the brackets is the memory location that will be operated on. Register is a register R0 to R3 or
one of the special registers. Absolute, is a number representing a specific memory location. Offset an
integer value that allows you to adjust the value of the memory address operated on without the need to
modify the base.

Page 14

Here is a very simple example:

#include "console.ppl"

func WinMain;
 InitConsole;
 ShowConsole;

 new(startVal$, tint);
 new(endVal$, tint);

 StartVal$ = 0;
 EndVal$ = 0;
 asmCall$ = asm(1024, {
#DEASM
 :main
 mov StartVal$, 1
 mov EndVal$, 2

 savesp
 pplpush [AARGSCOUNT$]
 ppl showmessage

 savesp
 pplpush [AARGS$]
 ppl showmessage
 });

 callasm(asmCall$, 20, 30);
 writeln("Test "+ startVal$ + ", "+ endVal$);

 freeasm(asmCall$);
 free(startVal$, endVal$);

 return(true);
end;

If you read my previous articles, you know that I'm a fan of using the console for my examples, so it
should be no surprise that I first include the console. Next I declare some variables in the PPL memory
space outside of PASM. Next is the assembly code followed by the CallASM instruction. Some values
are written and the assembly code and variables are freed.

When compiled, the call to ASM takes 2 arguments the first being the size of the byte buffer that holds
the assembled code and the second is the string of assembly instructions. The buffer is specified in
bytes and a multiplier is used on the buffer size depending on what you are doing. For example, by
running your code under debug, it is possible to step through and break on assembly instructions. In
order to do this, extra machine code instructions are inserted to support doing this so the buffer must be

Page 15

expanded. It also means that your code will execute slower under debug than it will in run mode. The
buffer is created at run time and the assembler runs against the 2nd argument which is the text with all
of the assembly instructions. So keep in mind that if you make a change to the assembly code, any
errors will not be found until run time. It also means if you plan on using the assembler you may want
to place your ASM instructions at startup and keep them for the duration of the program so that the
code is not reassembled during the execution of your program when you really need the speed.

The CallASM instruction invokes the code created in the buffer by the ASM command. CallASM can
take additional arguments that will be passed into the assembly code as parameters. The parameters are
placed into an AARGS$ array and the size of the array is placed into AARGSCOUNT$. Each of the
parameters are treated as a 4 byte (32 bit) value. So the value of 20 is at [AARGS$] and the value of
30 is at [AARGS$+4].

The line ":main" above indicates the entry point to your assembly code. This is a label and is used as
the target in jump instructions.

The line "#DEASM" above instructs the ASM instruction place the actual assembly instruction for your
processor to be placed into the DebugLog file. This does take extra time, so it shouldn't be used in
production programs. The #debugoff pragma can be used to disable this for the entire project.

Here is a simple example when using #DEASM. The 2 lines from above:

mov StartVal$, 1
mov EndVal$, 2

On Intel processors are translated into:

mov edi, D45B28h(STARTVAL$)
mov [edi], 01h
mov edi, D45B98h(ENDVAL$)
mov [edi], 02h

On Arm processors are translated into:

ldr r9, 34C9B0h(STARTVAL$)
ldr r10, #01h
str r10, [r9]
str r10, #01h
ldr r9, 34CA40h(ENDVAL$)
ldr r10, #02h
str r10, [r9]
str r10, #02h

Page 16

The lines from the PASM example above:

 savesp
 pplpush [AARGSCOUNT$]
 ppl showmessage

Show an example of saving the position on the stack pushing some arguments onto the stack where ppl
can get to it then calling a PPL function. Here is another example:

 savesp
 pplpushstr tstStr1$
 pplpushstr tstStr2$
 pplpushstr tstStr3$
 ppl concat
 pplpull

In this example, the stack pointer is saved, all of the required arguments are placed onto the stack and
the PPL concat function is called to concatenate the strings together. The stack is restored to its
previous state after the PPL call, then the address of the new string is pulled from the stack. The new
string is created in a new memory space that the garbage collector will automatically clean up from.

I'll leave you with one more example. This example demonstrates the usage of Jump instructions and
the use of an assembly procedure. The entry point is at ":main". It tests the number of arguments
passed into the assembly code to see if there is only one. In this case there is only one so the value of
20 is passed to the function "!asmCalc". As in high level code, the string in parenthesis becomes a
variable for the function. The "Var FinSum" instructions declares a local var for use within the
function. The function then calculates the Fibonacci series on the number passed to it adding all of the
numbers from n + (n-1) + ... + 2 + 1.

#include "console.ppl"

func WinMain;
 InitConsole;
 ShowConsole;

 new(startVal$, tint);
 new(endVal$, tint);

 asmFib$ = asm(1024, {
#DEASM
 !asmCalc(Value)
 var FinSum
 mov startVal$, value
 mov R0, 0
 :FibLoop
 cmp value, 0
 jeq FibDone

Page 17

 add R0, value
 sub value, 1
 jmp FibLoop
 :FibDone
 mov FinSum, R0
 mov endVal$, FinSum
 ret
 :main
 cmp [AARGSCOUNT$], 1
 jeq extArg
 jsr asmCalc(10)
 jmp asmDone
 :extArg
 jsr asmCalc([AARGS$])
 :asmDone
 });

 t$ = tick;
 callasm(asmFib$, 20);
 writeln("Fibbon("+ startVal$ + ")="+ endVal$ + " time =" + (tick -
t$));

 freeasm(asmFib$);
 free(startVal$, endVal$);

 return(true);
end;

Play with PASM a while and let us know what you think in the Forums. In the next newsletter, I will
address some more advanced examples.

Page 18

Form Options Quick Reference (by Brad Manske)

Each of the options are listed below along with the effect that it has on the form.

Dialog Form
Default: Off

When selected, the form will be created using a call to NewDlg to create the window. If not selected,
then NewForm will be used to create the window if it is full screen, DefaultForm is selected in styles
and there are no extended styles. If these conditions are not met, then the NewFormEx function will be
used to create the window.

Generate Library
Default: Off

When selected, the form will create PPL source code that can be included in with a larger project. If
not selected, the form will have a WinMain function indicating the entry point for the project. It is
possible to create a stand alone program in a single form file with this option deselected.

Simplified Event Handling
Default: On

When selected, PPL will route the windows messages to the correct handler functions. If not selected,
then the more traditional case table type logic is needed to decode and process the messages sent to the
handler functions.

Extended Event Code
Default: On

When selected, PPL will include code in the Simplified Event Handlers to do some of the more
common decoding of the windows messages. If not selected, the code will be left off. To find the
included code look in SWAPI.PPL for the #define for HandleEventParms.

Use Namespace
Default: On

When selected, the form will include the #NameSpace command in the generated PPL code. This will
force global variables and controls into their own namespace to avoid items named the same on
multiple forms. If not selected, then all global variables and controls will be placed into the global
NameSpace.

Page 19

PPL Game Programming - Part 3

The physic engine

Our world is made of physic, everything is physic! Gravity pushes every object to the ground, every
step we take involves friction with the surface our shoes come in contact with, wind blows and pushes
leaves around and balls bounces from the ground and walls with different elasticity. When applied to a
game, physics can add more realism and can add possibilities you thought were too hard to code.

PPL comes with a 2D automated physic engine. When I say automated I mean it, you only need to set
the mass of a sprite, set the global gravity and the physic will take care of pushing the object down.
Objects can bounce back and forth by simply assigning an elasticity value. The physic is far from an
advanced one that supports object deformation on collision and such but it can do a very good job
simplifying your life while developing your game.

Lets first start by reviewing the principal functions used by the physic engine:

SetSpriteMass(Sprite$, Mass);

The mass is a percentage value that is compared to the other sprites with physic. A sprite with 0.5 mass
will weight half the weight of a sprite with a mass of 1.0.

SetSpriteElasticity(Sprite$, Elasticity);

The elasticity value is a percentage compared to the other sprites. The bigger the value the more
rebound will be applied when the sprite collides with another sprite.

SetSpriteFriction(Sprite$, Friction);

The friction is the amount of friction in percentage applied to reduce the movement speed of the sprite
when it collides with another sprite.

SetGravity(Gravity);

This function will set the global gravity of the sprite engine, the value of the gravity is applied to the
sprites movement speed each cycle. Default gravity is around 0.1.

SetFriction(Friction);

Set the global friction that is applied to sprite's movement speed each cycle. The default friction value
is 0.00025.

There are options that need to be activated for the physic engine to consider moving the objects around.
The first one is the SO_KINETIC to active the physic engine on the sprite itself. The second one is the
SO_BOUNCE, it will make the sprite bounce around from other sprites. The bounce force is
calculated based on the Elasticity of the sprite. Sprites must have the SO_COLLIDECHECK option
set to them for bouncing to occur. You can have your sprites bounce from the screen edges by setting

Page 20

the SO_BORDER option. Most of the sprites you will want to bounce around will be of oval shape,
you will want to set the SO_OVAL option for the physic engine to bounce the sprite like a real oval
shaped object.

Lets review the bounce.ppl demo that comes with PPL. This demo involves 5 basketball balls bouncing
around from the screen edges and from each other. In this example we create 5 sprites with the
basketball ball image and the we set the options of each sprite to oval shape, collision checking, pixel
checking and border collision check.

// Set global gravity.
SetGravity(0.1);
// Set global friction.
SetFriction(0.005);

i$ = 0;
while (i$ < 5)
 // Load ball sprite from disk.
 s$ = loadsprite(AppPath$ + "ball.bmp", G_RGB(255, 0, 255), 1, 0,
NULL);
 // Activate pixel perfect collision detection.
 AddSpriteOption(s$, SO_OVAL | SO_CHECKCOLLIDE | SO_PIXELCHECK |
SO_BORDER | SO_KINETIC);
 // Make the balls collide and never go over another.
 SetSpriteCollide(s$, "BALL");
 SetSpriteId(s$, "BALL");
 repeat
 MoveSprite(s$, random(g_width - 40), random(64));
 ProcessSprites(1, 0);
 until (Collide(s$, SpriteX(s$), SpriteY(s$), nx$, ny$) == NULL);
 // Set ball elasticity.
 SetSpriteElasticity(s$, 0.01);
 // Set some friction when the balls collide.
 SetSpriteFriction(s$, 0.01);
 // Set sprite's weight.
 SetSpriteMass(s$, 0.5);
 // Set the maximum velocity to 10 pixels.
 SetSpriteVelLimits(s$, 0, 10);
 i$++;
end;

Page 21

Time to say goodbye

Thank you for your interest in PPL. We hope to see you in the forums, let's make that place a source of
good information and the best possible library for PPL enthusiasts. If you any comments or questions,
please visit our forums or contact us via support@arianesoft.ca

If you want to contribute to this newsletter with articles, tips, suggestions, please contact us, we will be
happy to include them.

Regards,
Alain Deschenes
President
ArianeSoft Inc.
www.arianesoft.ca

Page 22

http://www.arianesoft.ca/
mailto:support@arianesoft.ca

